On the Measure Entropy of Additive Cellular Automata f∞
نویسندگان
چکیده
منابع مشابه
On the Measure Entropy of Additive Cellular Automata f∞
We show that for an additive one-dimensional cellular automata on space of all doubly infinitive sequences with values in a finite set S = {0, 1, 2, ..., r-1}, determined by an additive automaton rule f(x ∞ f n-k, ..., xn+k) = (mod r), and a -invariant uniform Bernoulli measure μ, the measure-theoretic entropy of the additive one-dimensional cellular automata with respect to μ is equal to h ∑ −...
متن کاملOn the Rotation Entropy of Additive Cellular Automata
In this paper, we first introduce the definition of rotational sets for cellular automata ∞ using Misiurewicz’s rotational sets. After that, we define rotational entropy functions for cellular automata ∞ from Bowen’s definiton of rotational entropy. Finally, we compare rotational entropy function with topologic entropy function for cellular automata ∞.
متن کاملOn Computing the Entropy of Cellular Automata
We study the topological entropy of a particular class of dynamical systems: cellular automata. The topological entropy of a dynamical system (X; F) is a measure of the complexity of the dynamics of F over the space X . The problem of computing (or even approximating) the topological entropy of a given cellular automata is algorithmically undecidable (Ergodic Theory Dynamical Systems 12 (1992) ...
متن کاملOn the Entropy Geometry of Cellular Automata
A bstract. We cons ider config urat ions which ass ign some element of a fixed finite alphabet to eac h point of an sa-dimensional lat t ice. An n-dimensional cellular automaton ma p ass igns a new configuration a' :::: l ea) to each such configuration 8 , in a.translation invariant man ner , and in such a way t hat the values of l ea) t hroughout any finite subset of the la ttice dep end only ...
متن کاملEntropy of Cellular Automata
Let X = S where G is a countable group and S is a finite set. A cellular automaton (CA) is an endomorphism T : X → X (continuous, commuting with the action of G). Shereshevsky [13] proved that for G = Z with d > 1 no CA can be forward expansive, raising the following conjecture: For G = Z, d > 1 the topological entropy of any CA is either zero or infinite. Morris and Ward [10], proved this for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2003
ISSN: 1099-4300
DOI: 10.3390/e5020233